Operational Approach and Solutions of Hyperbolic Heat Conduction Equations

نویسنده

  • Konstantin V. Zhukovsky
چکیده

We studied physical problems related to heat transport and the corresponding differential equations, which describe a wider range of physical processes. The operational method was employed to construct particular solutions for them. Inverse differential operators and operational exponent as well as operational definitions and operational rules for generalized orthogonal polynomials were used together with integral transforms and special functions. Examples of an electric charge in a constant electric field passing under a potential barrier and of heat diffusion were compared and explored in two dimensions. Non-Fourier heat propagation models were studied and compared with each other and with Fourier heat transfer. Exact analytical solutions for the hyperbolic heat equation and for its extensions were explored. The exact analytical solution for the Guyer-Krumhansl type heat equation was derived. Using the latter, the heat surge propagation and relaxation was studied for the Guyer-Krumhansl heat transport model, for the Cattaneo and for the Fourier models. The comparison between them was drawn. Space-time propagation of a power–exponential function and of a periodic signal, obeying the Fourier law, the hyperbolic heat equation and its extended Guyer-Krumhansl form were studied by the operational technique. The role of various terms in the equations was explored and their influence on the solutions demonstrated. The accordance of the solutions with maximum principle is discussed. The application of our theoretical study for heat propagation in thin films is considered. The examples of the relaxation of the initial laser flash, the wide heat spot, and the harmonic function are considered and solved analytically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study Of Thermoelastic Damping in an Electrostatically Deflected Circular Micro-Plate Using Hyperbolic Heat Conduction Model

Thermoelastic damping (TED) in a circular micro-plate resonator subjected to an electrostatic pressure is studied. The coupled thermo-elastic equations of a capacitive circular micro plate are derived considering hyperbolic heat conduction model and solved by applying Galerkin discretization method. Applying complex-frequency approach to the coupled thermo-elastic equations, TED is obtained for...

متن کامل

Thermo-elastic Damping in a Capacitive Micro-beam Resonator Considering Hyperbolic Heat Conduction Model and Modified Couple Stress Theory

In this paper, the quality factor of thermo-elastic damping in an electro-statically deflected micro-beam resonator has been investigated. The thermo-elastic coupled equations for the deflected micro-beam have been derived using variational and Hamilton principles based on modified couple stress theory and hyperbolic heat conduction model. The thermo-elastic damping has been obtained discretizi...

متن کامل

Compressible Navier-Stokes equations with hyperbolic heat conduction

In this paper, we investigate the system of compressible Navier-Stokes equations with hyperbolic heat conduction, i.e., replacing the Fourier’s law by Cattaneo’s law. First, by using Kawashima’s condition on general hyperbolic parabolic systems, we show that for small relaxation time τ , global smooth solution exists for small initial data. Moreover, as τ goes to zero, we obtain the uniform con...

متن کامل

Non-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution

Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...

متن کامل

Exact and analytic-numerical solutions of bidimensional lagging models of heat conduction

Lagging models of heat conduction, such as the Dual-Phase-Lag or the Single-Phase-Lag models, lead to heat conduction equations in the form of partial differential equations with delays or to partial differential equations of hyperbolic type, and have been considered to model microscale heat transfer in engineering problems or bio-heat transfer in medical treatments. In this work we obtain expl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Axioms

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016